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ABSTRACT

In this work, we present an empirical comparison of statistical methods that
estimate the accuracy of a classifier using noisy expert labels. We are motivated
by the application of machine learning to difficult problems for which even experts
may be unable to provide an authoritative label for every data instance. Several
estimators have been recently proposed in the literature, but prior empirical work to
evaluate the applicability of these estimators to real-world problems is limited. We 
apply the estimators to labels simulated from three models of the expert labeling
process and also four real datasets labeled by human experts. Our simulations
reveal the importance of the accuracy of the classifier relative to the experts and
confirm that conditional dependence between experts negatively impacts estimator
performance. On two of the real datasets, the estimators clearly outperformed the
baseline majority vote estimator, supporting their use in applications. We also
briefly examine the utility, in terms of increasing or decreasing confidence in an
estimator’s output, of a few diagnostics that can be applied to the expert labels.
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1. INTRODUCTION

Estimating the accuracy of a classifier is usually a straightforward task: simply compare the
classifier’s predicted labels with the true labels for some test set. In applications where ground
truth is not readily available, expert judgment is often used to determine the true labels. When
these expert labels contain significant label noise, however, accuracy estimates derived from them
may be unreliable. The common use of crowd workers (who may have limited expertise or dedica-
tion to the task) from web-based services such as Amazon Mechanical Turk for labeling data and
the application of machine learning to problems difficult even for true human experts make the
importance of accounting for label noise in evaluation clear.

In this paper, we consider the following setting: Suppose we have a dataset D of samples from
X and assume each datapoint in D receives a label from a classifier and each of E experts. Our
goal is to use these labels to estimate the accuracy of the classifier on X . Training the classifier is
a separate issue; it may be unsupervised or trained on a different labeled dataset.

Several approaches to estimating accuracy in this setting have been proposed, most in the
last few years. Dawid and Skene [1] appear to have been one of the first to propose a non-trivial
algorithm to estimate accuracy using noisy labels. More recently, several estimators have appeared
in the literature [2–6].

In this paper, our primary goal is to empirically analyze the effectiveness of these estimators
on both simulated and real data. In particular, we are interested in the case where the classifier is
better than the human experts. This runs counter to most work in evaluation of systems; typically,
one assumes that if there are errors in the ground truth (our expert labels), they are insignificant
compared to the errors made by the system. As classifiers become increasingly sophisticated (and as
more labeling tasks are performed via crowdsourcing) this assumption is becoming increasingly less
valid. Some authors have noted problems with this assumption in the forecast evaluation literature
as well [7, 8].

1.1 PRIOR EMPIRICAL WORK

As we intend our study to be primarily empirical, we now briefly describe how the estimators
mentioned above have been empirically evaluated in prior work. Donmez et al. [2] present the most
comprehensive experimental treatment, examining the robustness of their estimator to experts with
a mix of accuracies on synthetic datasets, as well as real datasets with both humans and trained
classifiers in the role of the “experts.” While they note that experts are likely dependent in several
of their datasets, they do not confirm this nor investigate the strength of dependence. Platanios et
al. [3,6] apply their estimators to a natural language processing (NLP) dataset as well as a functional
magnetic resonance imaging dataset. They compute a measure of unconditional dependence for the
NLP data, but do not explore the effect of dependence in general. In addition, they do not perform
experiments where data is gathered from human experts. Lehner [5] performs several experiments
on simulated data, but all experiments appear to have conditionally independent experts. The
author also considers the bias of the estimator and its relation to the accuracy of the classifier.
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Finally, Jaffe et al. [4] apply their estimator only as a component of an ensemble method for
inferring the true label.

1.2 OUR FOCUS AREAS

We note three major gaps in prior empirical evaluations. First, almost no prior work has
applied these estimators to data labeled by human experts. They have mostly been applied to
simulated data or to large datasets labeled by automated classifiers. Second, there is little to no
understanding of how well these estimators perform when applied to labels from experts that are
conditionally dependent. Third, prior work has not explicitly considered how the performance of
the classifier relative to the experts impacts estimator error. In this paper, we address each of these
issues through an extensive set of simulations and four experiments involving human experts.

1.3 ORGANIZATION

We now outline the remainder of this paper. In Section 2, we set our notation and discuss
our problem setting. We describe several estimators from the literature and two baseline accuracy
estimators in Section 3. Then, in Sections 4 and 5, we apply these methods to both simulated and
real data. We describe one new model for simulating data and use two others from the literature
in Section 4 to make inferences about the performance of the estimators as accuracy and expert
dependence are varied. We show results for four experiments involving human experts in Section 5.
Then, in Section 6, we discuss the extent to which diagnostics can be applied to a dataset labeled
by experts to increase or decrease the confidence of a practitioner in the output of the method.
Finally, we conclude and discuss opportunities for future work in Section 7.
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2. NOTATION AND PROBLEM SETTING

Suppose we have a dataset D = {xn}Nn=1 of samples from X with true labels yn ∈ Y =
{1, . . . , L} that are unknown. The true labels occur according to the class prior distribution π =
(π1, . . . , πL). Given a classifier f0 : X → Y, we denote its label on data point xn as ŷ0

n := f0(xn).
Denote the classifier’s confusion matrix entries as ψ0

ll′ := P (ŷ0 = l′ | y = l) for 1 ≤ l ≤ L, 1 ≤ l′ ≤ L.

Our goal is to estimate the classifier’s accuracy α0 =
∑L

l=1 πlψ
0
ll. To do this, suppose we also

have access to E experts fe : X → Y, 1 ≤ e ≤ E and that each expert labels all the points in our
dataset. We denote the label of expert e on datapoint xn as ŷen := fe(xn). For each expert e, we
denote the expert confusion matrix entries as ψe

ll′ := P (ŷe = l′ | y = l) for 1 ≤ l ≤ L, 1 ≤ l′ ≤ L.

The accuracy estimators described previously consume labels from both the classifier and
experts {(ŷ0

n, ŷ
1
n, . . . , ŷ

E
n )}Nn=1 and output an estimate α̂0 to α0. We are interested in both the

signed and absolute error between the true classifier accuracy and the estimated classifier accuracy,
that is α̂0 − α0 and |α̂0 − α0|.

We note that all past work, with the exception of [5], has focused on the mean absolute error
over the classifier and all the experts. Of most interest to us is the use case in which the experts
are specifically used to estimate the accuracy of the classifier. As a result, we compute errors with
respect to the performance of the classifier only, as described above.

Since our focus is to consider the application of these methods to studies involving labels
gathered from human experts, we will consider the performance of these methods when the number
of samples is small, that is N ≤ 200. As a result, we will also consider a small number of classes.
While accuracy does not depend on the number of classes, we find it inconsistent to consider a
large number of classes and a small number of samples. In addition to the seeming inconsistency,
some of the estimators compute per-class accuracy and as a result, will likely perform very poorly
if applied to a many-class problem using a small number of samples. As a result, we will consider
between two and five classes in this work. Previous work, except that by Lehner [5], has considered
only two classes.
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3. ACCURACY ESTIMATORS

In this section, we describe a simple baseline accuracy estimator and five statistical accuracy
estimators.

3.1 BASELINES

Majority Vote (MV) Perhaps the most natural way to use the expert labels to evaluate the
classifier is to simply combine the expert labels via majority vote and regard this as the ground
truth. Then, estimate accuracy as the percent agreement between the classifier labels and the labels
derived from the expert majority vote.

3.2 AGREEMENT-BASED ESTIMATORS

The similar, but distinct, estimators below both make use of agreement between experts to
estimate classifier accuracy.

3.2.1 Optimization based on pair-wise agreement rates (AGR-OPT)

Platanios et al. [3] use agreement rates between a set of classifiers/experts to estimate the
accuracy of each. The core observation is that it is possible to express the probability of pairwise
agreement, which is easily measured, as a function of accuracy, which we want to know. To see
this, define Ci as the event where classifier/expert i is correct1. Then, notice that

P (f i(x) = f j(x)) = P (Ci ∩ Cj) + P (Ci ∩ Cj)

= P (Ci ∩ Cj) + P
(
Ci ∪ Cj

)
= P (Ci ∩ Cj) + 1− P (Ci)− P (Cj) + P (Ci ∩ Cj)

= 1− αi − αj + 2α{i,j},

where α{i,j} is the “joint accuracy” of classifier/expert i and j.

This relationship between agreement and accuracy for pairs of classifiers/experts defines
(
E+1

2

)
equations in E + 1 +

(
E+1

2

)
unknowns. Since this is an underdetermined system of equations, the

authors suggest minimizing an objective function with the agreement equations as constraints.
Specifically, they minimize

O(α) =

E∑
i,j=0
i 6=j

(
αiαj − α{i,j}

)2
.

The effect of this objective is to find accuracies that satisfy the constraints and imply the least
amount of dependence possible.

1 We denote the event where classifier/expert i is incorrect as C̄i
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Notes

1. Platanios et al. [3] present their method for the binary case. We will thus show results only
on binary problems.

2. Higher-order agreement rates can be related to functions of higher-order accuracies and thus
incorporated into the optimization problem as additional constraints. However, previous work
has found that that this has little benefit in terms of the quality of accuracy estimation and
makes the optimization problem much more difficult to solve. Thus, in our implementation,
we consider only pairwise agreement rates.

3. Platanios et al. [3] derive additional constraints to add to the optimization problem using
some simple rules of probability. To be specific, since

P (Ci ∩ Cj) = P (Ci |Cj)P (Cj) ≤ P (Cj) and P (Ci ∩ Cj) = P (Cj |Ci)P (Ci) ≤ P (Ci)

we have that
α{i,j} ≤ αi and α{i,j} ≤ αj .

4. Notice that the derivations above can also be derived in terms of error rates, rather than ac-
curacy. As a consequence, it is not possible to distinguish between a classifier/expert that is
10% accurate and a classifier/expert that is 90% accurate. To rectify this identifiability prob-
lem, Platanios et al. [3] introduce the constraints αi ∈ (0.5, 1], which encodes the assumption
that the classifiers are all better than random.

3.2.2 Agreement between expert consensus and classifier (AGR)

Lehner [5] derives an estimator that is similar to that discussed above. However, Lehner
isolates the classifier from the experts and also assumes that all experts have the same symmetric
confusion matrix. That is, given the true class, each expert is right with probability αe and chooses
one of the remaining L− 1 classes with probability (1− αe)/(L− 1). The classifier is assumed to
have a symmetric confusion matrix with parameter α0.

Lehner uses agreement between the experts to estimate αe, the expert labels to estimate the
base rate of the classes, and then Bayes’ rule to estimate the probability that an instance belongs to
each class. Finally, assuming these probabilities represent the probability that each label is correct,
let fhp be the class label with the highest probability and αhp be the probability assigned to that
label. Let Chp be the event that the class label with the highest probability is correct. Then, using
the law of total probability, Lehner shows that

P (f0(x) = fhp(x)) = P (f0(x) = fhp(x) |Chp)P (Chp) + P (f0(x) = fhp(x) |Chp)(1− P (Chp))

= α0αhp +
1− α0

l − 1
(1− αhp),

assuming that the classifier label is independent of the most probable label. It is now possible to
solve for α0

α0 =
(L− 1)P (f0(x) = fhp(x)) + αhp − 1

L · αhp − 1
.

6



yn ŷen αe

0 ≤ e ≤ E1 ≤ n ≤ N

Figure 1. Graphical model of label generation.

Agreement rates are measured by binning the data instances by expert label probability and then
determining the proportion of instances in each bin where the most probable label and the classifier
label agree. Then, the bin-wise α0 are computed and combined via a weighted average.

3.3 GRAPHICAL MODELS (MLE AND BEE)

Two groups of authors, Donmez et al. [2] and Platanios et al. [6], consider a graphical model
that describes classifier/expert label generation and use this to infer accuracy. We display the
graphical model in Figure 1. The nodes yn, 1 ≤ n ≤ N represent the (unknown) true label for
each data instance. The nodes αe, 0 ≤ e ≤ E represent the (unknown) accuracy of classifier/expert
e, while the nodes ŷen represent the label of the eth classifier/expert on the nth data instance.
Donmez et al. [2] approximate the maximum likelihood estimate of accuracy using Expectation-
Maximization. Platanios et al. [6] set priors for yn and αe and use Gibbs sampling for inference.

Notes

1. Platanios et al. [6] present their method for the binary case. We extended the method to
apply to multi-class problems, but found the inference procedure to work inconsistently in
this case. We will thus show results only on binary problems.

2. Many other authors have proposed related graphical models for the purpose of inferring the
true label [9–16] many of which contain accuracy based parameters and could thus be used
to estimate accuracy as well. These approaches typically incorporate additional effects such
as item difficulty [11] or expert dedication [13]. We consider the simplest versions of these
models because previous work has found them to perform well in practice.

3.4 COVARIANCE-BASED ESTIMATOR (COV)

Parisi et al. [17] and Jaffe et al. [4] use the labeler covariance matrix to either rank a group
of binary classifiers [17] or estimate their class conditional accuracies [4].

7



Parisi et al. [17] show that the off-diagonal entries of the classifier covariance matrix are equal
to the off-diagonal entries of a rank-one matrix S. That is: E

[
(f i − µi)(f j − µj)

] 
︸ ︷︷ ︸

Σ

=︸︷︷︸
∀i 6=j

 Sij


︸ ︷︷ ︸

S

=

si
 [ si

]
︸ ︷︷ ︸

ssT

.

In addition, they show that

si =
√

1− b2(ψi
11 + ψi

22 − 1), (1)

where b = π1 − π2, and that the classifier means µi can be written as

µi = (ψi
11 − ψi

22) + b(ψi
11 + ψi

22 − 1). (2)

Solving the system of linear equations from (1) and (2) in terms of µi, si, and b, we reach

ψi
11 =

1

2

(
1 + µi + si

√
1− b
1 + b

)

and

ψi
22 =

1

2

(
1− µi + si

√
1 + b

1− b

)
.

The means µi and also b can both be easily estimated from the classifier labels. Computing the
diagonal of S is more difficult and Parisi et al. [17] discuss several algorithms to do so. Once this
is done, we can recover s from the singular value decomposition of S.

Notes

1. Jaffe et al. [4] extend the work of Parisi et al. [17] and show how to use the “covariance tensor”

E
[
(f i − µi)(f j − µj)(fk − µk)

]
to consistently estimate b. We find that for small sample sizes, estimating b simply as the
proportion of classifier and expert labels often performs better.

2. This approach extends easily to multi-class problems by considering a sequence of one vs.
all estimation problems. The estimate to sensitivity for each binary problem becomes the
estimated diagonal entry of the confusion matrix.

8



4. SIMULATIONS

In this section, we consider three models of label generation (difficulty, groups of experts, and
copy) and then examine the results of applying the estimators described in Section 3 to datasets
simulated from the models. Each model simulates conditional dependence between experts in a
different way. Two of the models, groups of experts and difficulty, appear in the literature (see [18]
and [19]). The copy model is our own construction. We use the models to address the following
questions:

1. Is there a relationship between conditional dependence and estimator error?

2. If expert and classifier accuracies are different from one another, what effect does this have
on estimator error?

3. Can we draw broad inferences about the performance of the estimators relative to one another?

4.1 MODELS CONSIDERED

Difficulty model The first model of expert dependence, depicted in Figure 2a, assumes that in
a dataset, some instances are inherently more difficult than others. True labels are drawn from a
Dirichlet class label prior distribution π = Dir(1, . . . , 1). We consider the case where instances are

y d

ŷe

0 ≤ e ≤ E

(a) Difficulty model.

g1 g2

y

ŷ1ŷ0 ŷ2 ŷ3

(b) Groups of experts model with two groups.

y

ŷ1ŷ0 ŷ2

ŷ3

(c) Notional copy model for three experts.

Figure 2. Models of label generation.
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either “easy” or “hard” (encoded in the model by the d node). Experts choose their label from a
different confusion matrix depending on whether the instance is easy or hard. Clearly, the experts
are no longer conditionally independent, given only the true label.

Groups of experts model The second model of dependence assumes that the experts are divided
into groups and choose a label for each data instance after viewing the true label through their
group’s “intermediate node.” The model is depicted in Figure 2b. Notice that experts in the same
group are conditionally dependent, given the true label, but that experts in different groups are
conditionally independent. It should be noted that this notion of dependence is global in nature.
If two experts fall into the same group, they are dependent throughout the simulation.

In this simulation, the true label y is sampled from a Dirichlet class label prior distribution
π = Dir(1, . . . , 1). Next, a noisy version of the label gk is generated for each group k, according to
the group confusion matrix φk. The experts view gk and then generate a label according to their
confusion matrix ψe.

Copy model The third model induces dependence between experts via a random instance-
dependent partition of experts. The assignment of experts to groups is similar to the Chinese
Restaurant Process (CRP) [20].

Formally, for a single instance, the true label y is sampled from a Dirichlet class label prior
distribution π = Dir(1, . . . , 1). The classifier selects a label using its own confusion matrix. The
first expert’s label is generated in an identical fashion using the expert confusion matrix. Given
that e expert labels have been produced, the e + 1-st is generated by the following process: with
probability ρ, expert e+ 1 copies the label of a previous expert (chosen uniformly at random) and
with probability 1 − ρ, expert e + 1 will generate a label independent of previous experts using
the expert confusion matrix. Note that this model differs from the CRP in that the probability of
generating a new label is fixed at 1−ρ, whereas in the CRP this probability is inversely proportional
to the number of experts who have already chosen a label. Also note that for ρ = 0, the experts
are conditionally independent and when ρ = 1, all experts provide the exact same set of labels. A
notional depiction of the model is provided in Figure 2c.

The motivation for this model is twofold. In early simulations, it was quickly observed that
as expert accuracy decreased, error in estimating the classifier’s accuracy increased. Additionally,
many of the estimators either assumed conditional independence of the experts, or proved perfor-
mance guarantees with a conditional independence assumption. The copy model allows us to easily
decouple accuracy and dependence (as compared to the difficulty and groups of experts models).
In contrast to the other models, there is no notion of global dependence; experts are dependant
only on a per-instance basis.

4.2 MODEL PARAMETERIZATION

We performed simulations across the three expert labeling models using parameter grids. In
all simulations, we fixed the number of experts at E = 5, the number of classes at L = 5, the

10



number of samples at N = 100, and considered 100 Monte Carlo replicates. We now discuss the
values considered for each model’s parameters.

Difficulty model In order to ensure that the “hard” instances in the difficulty model are always
more challenging to the simulated experts and classifiers in the difficulty error model, we set ac-
curacy on the hard instances as a percentage penalty of the accuracy on the easy instances. For
example if the expert accuracy on easy instances is 0.8 and the hard penalty is 0.4, then expert
accuracy on hard instances is given by 0.8 · (1− 0.4). We considered accuracies of between 0.4 and
0.9, in increments of 0.1 on the easy instances for both the experts and classifier, and hard penalties
of between 0.1 and 0.5 in increments of 0.1. We set the probability that an instance is easy to 0.5.
As a result, the accuracy of a classifier or expert is x

2 + x(1−y)
2 , where x is the classifier/expert

accuracy on easy instances and y is the hard penalty.

Groups of experts model For the groups of experts model, we let the number of groups
vary from one to six, fixed the “noise rate” of the intermediate nodes (gk) at 0.8, and considered
“noisy accuracies” of between 0.4 and 0.9 in increments of 0.1 for the experts and classifier. By
noisy accuracies, we mean the probability with which the classifier or expert labels match the
intermediate node.

Copy model For the copy model, we used accuracies of 0.4 and 0.9 in increments of 0.1 for the
experts and classifier and used expert correlations ρ between 0 and 0.8 in increments of 0.1.

4.3 RESULTS

In the rest of this section, we will address the three questions we outlined earlier; whether
conditional dependence affects estimator error, how differences in classifier and expert accuracy
affect estimator error, and whether we can draw any broad conclusions about the performance of
the estimators relative to one another.

Expert Dependence To address the issue of how conditional dependence between experts affects
estimator error, we will use the groups of experts model and copy model. In both of these models,
we can vary the overall “amount” of dependence without affecting expert or classifier accuracy.
We cannot easily do this in the difficulty model, so we do not present results for that here. In the
groups of experts model, note that increasing the number of groups causes more pairs of experts
to be conditionally independent. As a result, we expect that as the number of groups increases,
the error of the estimators will decrease. In the copy model, increasing the copy chance introduces
additional dependence between the experts and so we expect that the error of the estimators will
increase.

In Figure 3, we show the average absolute errors and one standard deviation error bars for
the estimators applied to the groups of experts model. In each plot, the horizontal axis contains
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Figure 3. Average absolute errors and one standard deviation error bars for 100 Monte Carlo samples per
parameter choice in the groups of experts model of dependence for each estimator. The noisy accuracies of
the experts and classifier are given in the title of the individual plots. The actual accuracies are 0.8 times
the noisy accuracies.
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the number of groups. Recall that as the number of groups increases, overall dependence between
experts decreases. The difference between the plots in the figure is the noisy accuracy of the experts
and classifier. We note that when expert and classifier noisy accuracy is either 0.7, 0.8, or 0.9, there
is a obvious decrease in error as the number of groups increases for COV, MLE, and AGR, especially
between one and two groups. When expert and classifier accuracy is low (especially at 0.4), there
is not as clear of a decrease in estimator error. It appears then that the effect of dependence on
estimator error is more pronounced as the experts and classifier become more accurate.

Figure 4 shows average absolute errors and one standard deviation error bars for the copy
model of dependence. In these plots, the horizontal axis shows 1 − ρ. Recall that as ρ increases,
dependence increases, or as 1 − ρ increases, dependence decreases. Across expert and classifier
accuracies, the overall trend is clear, as dependence between experts decreases, the error of the
estimators decreases. The trend is much more consistent across accuracies and estimators than for
the groups of experts model.

Expert and Classifier Accuracy We also want to examine the relationship between expert
and classifier accuracy and estimator error. To do this, we will plot estimator error against expert
accuracy, for fixed values of expert dependence and classifier accuracy.

In Figure 5, we show results for the difficulty model. In all the plots, the hard instance
penalty is 0.2. Our primary observation is that (except when classifier accuracy is 0.4) MLE, AGR,
and COV generally outperform MV when experts have low accuracy. It also appears that the
difference between MV and the others becomes larger as the classifier accuracy increases. For other
hard instance penalties, we observed a very similar pattern and as a result do not display those
plots here.

In Figure 6, we show results for the copy model. In this model, we again see that COV, MLE,
and AGR outperform MV when experts have low accuracy. As the classifier accuracy improves, the
performance of all estimators get worse and so the difference between MV and the others does not
increase as obviously as in the difficulty model. In these plots, we are showing results for ρ = 0.2.
As ρ increases, the differences between the estimators becomes smaller. For ρ = 0.0 or ρ = 0.1, the
differences between MV and the others is sharper.

Finally, in Figures 7 and 8, we show results for the groups of experts model with one and three
groups, respectively. When there is only one group (see Figure 7), all of the estimators perform
poorly. In fact, we see no improvement as the experts become more accurate. The u-shaped
curve for MV appears odd at first, but is explained by looking at the signed errors. MV tends to
underestimate classifier accuracy when experts have low accuracy and then overestimate classifier
accuracy when experts have high accuracy. In the between the two extremes, it crosses the true
accuracy of the classifier, which is why MV has small absolute errors for some expert accuracies.
These results seem to indicate that the groups of experts model with one group is particularly
adversarial to the estimators. When there are three groups (see Figure 8), we again see that MLE,
COV, and AGR have a clear advantage over MV when experts have low accuracy. For two groups,
results are similar to those for one. For four, five, or six groups, results are similar to those for
three groups.
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Figure 4. Average absolute errors and one standard deviation error bars for 100 Monte Carlo samples per
parameter choice in the copy model of dependence for each estimator. The accuracies of the experts and
classifier are given in the title of the individual plots.
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Figure 5. Average absolute errors and one standard deviation error bars for 100 Monte Carlo samples per
parameter choice in the difficulty model of dependence for each estimator. The accuracy penalty on hard
instances and the accuracy of the classifier on easy instances are given in the title of the individual plots.

The overall accuracy of the experts or classifier is x
2 + x(1−y)

2 , where x is the accuracy on easy instances and
y is the hard instance penalty.
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Figure 6. Average absolute errors and one standard deviation error bars for 100 Monte Carlo samples per
parameter choice in the copy model of dependence for each estimator. The value of ρ and the accuracy of
the classifier are given in the title of the individual plots.
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Figure 7. Average absolute errors and one standard deviation error bars for 100 Monte Carlo samples per
parameter choice in the groups of experts model of dependence with one group for each estimator. The noisy
accuracies of the experts and classifier are given in the title of the individual plots. The actual accuracies
are 0.8 times the noisy accuracies.
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Figure 8. Average absolute errors and one standard deviation error bars for 100 Monte Carlo samples per
parameter choice in the groups of experts model of dependence with three groups for each estimator. The
noisy accuracies of the experts and classifier are given in the title of the individual plots.

18



Relative Performance of the Estimators From the results displayed in this section, it seems
clear that MLE, COV, and AGR have some advantage over MV, particularly when the experts
have low accuracy and the classifier has high accuracy. Between MLE, COV, and AGR, there does
not seem to be a clear best performer. They tend to perform very similarly overall, and none is
consistently better than the others, across the simulations.

It is disappointing but perhaps not surprising that none of the MLE, COV, or AGR appears to
handle dependence between experts better than another. We argue that this is not surprising, as
despite being very different in their construction, each assumes conditional independence between
experts.

4.4 SUMMARY

We used three models to generate noisy expert labels that are not necessarily conditionally
independent to isolate several potential issues with using noisy labels to estimate accuracy. These
are the copy model, which on a per-instance basis generated clusters of experts who all chose the
same label and between clusters were conditionally independent; the groups of experts model, which
placed experts into groups, wherein experts received the same noisy observation of the true label;
and the difficulty model, which introduced heterogeneity into the accuracy of experts. From these
simulations, we reach the following conclusions:

1. Increasing the degree of dependence between experts increases error in the copy model and
either increased or left unchanged the error in the groups of experts model.

2. As the accuracy of the classifier increases relative to the accuracy of the experts, the perfor-
mance of all estimators suffer. However, COV, AGR, and MLE tended to be more robust to
these effects than MV.

3. MV tended to perform poorly when compared with COV, AGR, and MLE. In general, there
is no clear favorite between COV, AGR, and MLE; for some simulations, one outperforms the
others and vice versa.
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5. EXPERIMENTS

We discuss four experiments (Sections 5.1–5.4) conducted over the course of this study. In
each experiment, we gathered a labeled dataset and divided it into a training and testing set. We
then trained a classifier on the training set and applied it to the test set. Our goal is to estimate the
performance of the classifier on the test set (without using the true labels). To do this, we sample
a small number of data instances from the test set (100 or 200) and ask several human experts to
label each instance. Using the labels of the classifier and the experts on this sample, we apply the
estimators from Section 3 to estimate accuracy.

In each of the sections below, we will describe the specific experiment and show the per-
formance of the estimators in terms of signed error over bootstrap resamples of the data and in
terms of absolute error as the number of experts is increased. We will also examine the degree of
dependence between the classifier and experts. We defer discussion regarding detecting dependence
between experts until Section 6.

5.1 JOB CATEGORY

Dataset In this experiment, we used a dataset taken from a medium-sized enterprise network of
about 2000 users. The features were taken from two separate three-month periods, January–March
2016 and April–May 2016; these two periods define our training and test dataset. The classification
task is to determine to which job category (Staff, Administrator, or Management) users belong.
The features are as follows:

• Years employed, whether user has organization-owned mobile device

• Number of weekdays with no logins during normal work hours, number of weekdays with a
login

• Average time per week on VPN (morning, work hours, night), number of days with a VPN
connection from out of state

• Number of emails sent, number of emails received, number of users to whom email was sent,
number of users from whom email was received

The classification task is non-trivial as users across classes will have similar behavior for some
features. For example, both the Administrator and Management classes may send many emails,
while both Staff and Management may regularly connect via VPN or have an organization-owned
mobile device.

Classifier and experts For our classifier, we used a random forest. We collected labels on 100
samples from each of nine experts. On the left of Figure 9, we show the accuracies of each of
the nine experts on the sample and the accuracy of the classifier on the entire test dataset. The
classifier’s accuracy is about 88%, while the experts’ accuracies ranged from 45–83%. On the right
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Figure 9. Left: Accuracy of the classifier on the entire test dataset and accuracies of each expert on the
sample from the test dataset. Right: A class-averaged version of Yule’s Q statistic between all pairs of
classifier/experts.

of the figure, we show a class-averaged version of Yule’s Q statistic, which measures the degree
of conditional dependence between experts. Values close to 1 indicate a large positive conditional
dependence, while values close to -1 indicate a large negative dependence. On the other hand,
when the value is 0, the experts are conditionally independent. It is clear that many experts
exhibit significant positive dependence. The checkerboard pattern indicates there may be structure
in the dependence relationships; we defer this discussion until Section 6.

Estimator errors Having described the experiment and the performance of the classifier and
experts, we now apply the estimation methods to estimate the accuracy of the classifier. To get
a sense for the variance of the estimators, we resampled the dataset 10,000 times, applied the
estimator to each resample, and computed the errors. We show boxplots of the errors (and the
individual errors) for each estimator in Figure 10. We also include the so-called empirical estimator
EMP, which is simply the proportion of labels that are correct (using the known ground truth).
For a given sample of data, estimating accuracy on the test set as the proportion correct in the
sample is the best we can do.

It is clear that, overall, the estimators tend to underestimate accuracy. Specifically, the
median error is negative for MLE, COV, AGR, and MV. MLE provides the best median performance
but seems to have higher variance than the other estimators. While the estimates appear biased,
they do tend to be reasonably good approximations. No estimator ever had an absolute error
greater than 0.30 and the median error of each estimator is less than about 0.10.

We considered testing for differences in the mean absolute errors of the estimators. However,
due to the large number of resamples that we performed, even very small differences in the mean
absolute errors can be statistically significant. To avoid confusing the issue, we simply display the
mean absolute errors of the estimators in Table 1. MLE appears to perform the best with a mean
absolute error of 0.065, while MV performs the worst with a mean absolute error of 0.100.
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Figure 10. Signed errors for 10,000 resamples of the Job Category dataset for each estimator.

Increasing the number of experts We are also interested in whether using more experts in
the estimators decreases absolute error. To answer this question, we apply each estimator to every
possible subset of experts of size 2, 3, . . . , E − 2. In Figure 11, we show boxplots of the results for
MLE and AGR. For MLE, the median error declines as the number of experts increases. Regardless
of the number of experts, absolute error is nearly always less than 0.10. For AGR, the performance
as the number of experts increases is quite inconsistent. It appears that the performance is different
for odd and even numbers of experts. In particular, it is better on this dataset for an even number
of experts, though the performance gets worse as the number is increased. For odd numbers of
experts, the performance remains about the same. We hypothesize that this behavior is due to
the fact that it chooses a single most probable label to use in the agreement with the classifier
calculation. We observed similar behavior with MV, which also chooses a single consensus label to
compare against the classifier’s.

TABLE 1

Mean absolute errors of the estimators across 10,000 resamples of the Job Category
dataset.

Estimator Mean Absolute Error
COV 0.081

MLE 0.065

AGR 0.083

MV 0.100
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Figure 11. Absolute errors of MLE (left) and AGR (right) for all possible subsets of between two and seven
experts, on the Job Category dataset.
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5.2 CYBER SOCIAL MEDIA CONVERSATIONS I

Dataset In this experiment, we gathered social media conversations from three StackExchange
forums. StackExchange is a website divided into topic-based forums where users can ask questions.
We collected conversations from the Crypto, Security, and ReverseEngineering forums (158, 129,
and 316 conversations, respectively). We used half the dataset for training and half for testing.

Similar topics are discussed in each forum, and it is sometimes difficult to tell the true class.
For example, the following two conversations highlight a case that is not immediately clear:

1. I was thinking recently about password security. My goal is to have mostly random passwords,
that are different for each site. But you also should be able to remember them (or re-generate
them) without the help of any notes or the like...

2. I am currently reading about PBKDF2, and understand that the salt is used only once, while
the password is used multiple times in the computation of the final key (see this question).
How would the integrity of PBKDF2 change if the roles of password and salt are changed?...

While both quotes discuss passwords, the first concerns the writer’s opinion on password policies
and is from the Security forum, while the second is a highly technical conversation about a key
derivation algorithm and is from the Crypto forum.

Classifier and experts For our classifier, we used a support vector machine with a linear kernel.
We trained the classifier on term frequency-inverse document frequency (TF-IDF) features. We
collected labels on 100 samples from each of eight experts. The experts, of course, examined the
raw text, rather than the word count features. On the left of Figure 12, we show the accuracy
of each of the experts on the sample and the accuracy of the classifier on the entire test dataset.
The classifier’s accuracy is about 87%, while the experts’ accuracies ranged from 73–83%. On
the right of the figure, we show the dependence between experts. Again, we observe moderate to
strong positive dependence between experts. Compared to the previous experiment, it is much less
obvious whether there is any structure.

Estimator error We again resampled our dataset 10,000 times and computed the error in esti-
mating accuracy for each resampling. In Figure 13, we show a boxplot of errors for each estimator
and in Table 2 we show the mean absolute errors. In contrast to the previous experiment, here
we see that all estimators have median error that is less than 0.05. In addition, no estimator ever
makes an error larger than about 0.20. The mean absolute errors of the estimators are very similar,
between 0.029 and 0.038.

Increasing the number of experts We apply each estimator to every possible subset of experts
of size 2, 3, . . . , E − 2. In Figure 14, we show boxplots of the results for MLE and AGR. For MLE,
there is a slight decrease in median error as the number of experts increases, and perhaps a small
decrease in variance as well. For AGR, we again see that there appears to be a difference in the
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performance of the estimator for even and odd numbers of experts. For this experiment, odd
numbers of experts produce smaller errors than even numbers of experts. Again, the results for MV
on this dataset show a similar see–saw type pattern. For both even and odd numbers of experts,
increasing the number appears to slightly decrease the median error.
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Figure 12. Left: Accuracy of the classifier on the entire test dataset and accuracies of each expert on the
sample from the test dataset. Right: A class-averaged version of Yule’s Q statistic between all pairs of
classifier/experts.
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Figure 13. Signed errors for 10,000 resamples of the Social Media I dataset for each estimator.
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TABLE 2

Mean absolute errors of the estimators across 10,000 resamples of the Social Media I
dataset.

Estimator Mean Absolute Error
COV 0.033

MLE 0.029

AGR 0.038

MV 0.030
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Figure 14. Absolute errors of MLE (left) and AGR (right) for all possible subsets of between two and six
experts, on the Social Media I dataset.
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5.3 CYBER SOCIAL MEDIA CONVERSATIONS II

Dataset Our third experiment is very similar to the previous, except that we used conversations
from the social media website Reddit, rather than StackExchange. Reddit is also a website that con-
sists of topic-based forums (subreddits), but the conversations tend to be less formal and less focused
than those from StackExchange. We collected conversations from the asknetsec, ReverseEngineer-
ing, crypto, and darknetplan subreddits (751, 467, 785, and 784 conversations, respectively). We
used half the dataset for training and half for testing.

Similar to the example above, the classification is non-trivial for this problem because similar
topics may be discussed in different forums. Below are fragments of two conversations in which a
user poses a question:

1. How did the bash bug go unnoticed for so long?
You could ask the same question of Heartbleed. It’s an odd bug in an obscure feature of a
binary that a lot of researchers don’t bother looking at...

2. How to convert huge chunks of data into base N?
People computing huge values of pi often perform base conversions from hex to decimal for
billions or trillions of digits...

While both quotes contain security related questions, the first is a general information question
intended to prompt discussion and is from the asknetsec subreddit, while the second is a much more
specific question related to cryptography and is from the crypto subreddit.

Classifier and experts For our classifier, we used logistic regression, trained on (TF-IDF) fea-
tures. We collected labels on 100 samples from each of 8 experts. Again, the experts were shown
the raw text, rather than the word count features. On the left of Figure 15, we show the accuracies
of each of the experts on the sample and the accuracy of the classifier on the entire test dataset.
The classifier’s accuracy is about 83%, while the experts’ accuracies ranged from 65–81%. On the
right of the figure, we show the degree of conditional dependence between classifier/experts. As in
the previous experiments, we observe strong positive dependence between classifier/experts. There
does not appear to be obvious structure.

Estimator errors We repeat our resampling approach and show the boxplot of errors for each
estimator in Figure 16. The results for this dataset are more similar to the first than the second
experiment. For this experiment, the estimators are all biased below the true value. Each median
error is between -0.05 and -0.10. This bias is perhaps partly explained by the sample, as even EMP
is somewhat biased below.

We show the mean absolute errors of the estimators in Table 3. COV performs the best with
a mean absolute error of 0.064 while MV has the worst, at 0.108.
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Increasing the number of experts We apply each estimator to every possible subset of experts
of size 2, 3, . . . , E − 2. In Figure 17, we show boxplots of the results for MLE and AGR. For MLE,
we see perhaps a small increase in error as the number of experts increases and a small decrease in
variance. We see a similar pattern for AGR, that is, roughly similar error as the number of experts
increase and slightly smaller variance. Note that the see–saw pattern observed in the two previous
datasets does not appear here.
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Figure 15. Left: Accuracy of the classifier on the entire test dataset and accuracies of each expert on the
sample from the test dataset. Right: A class-averaged version of Yule’s Q statistic between all pairs of
classifier/experts.
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Figure 16. Signed errors for 10,000 resamples of the Social Media II dataset, for each estimator.
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TABLE 3

Mean absolute errors of the estimators across 10,000 resamples of the Social Media
II dataset.

Estimator Mean Absolute Error
COV 0.064

MLE 0.089

AGR 0.097

MV 0.108
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Figure 17. Absolute errors of MLE (left) and AGR (right) for all possible subsets of between two and six
experts, on the Social Media II dataset.
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5.4 FAKE NEWS

Dataset For our last dataset, we used the Buzzfeed Fact Check dataset2. The dataset consists
of posts from a variety of mainstream, left-wing, and right-wing Facebook pages. The dataset was
labeled by Buzzfeed staff into four classes, “Mostly True”, “Mixture of True and False,” “Mostly
False,” and “No Factual Information.” Labels were determined by Buzzfeed staff and required
fact-checking and providing citations for claims made in the article.3 To simplify the problem for
our experts (who could not be expected to fact-check a sample of 100 or 200 articles), we combined
the “Mostly False” and the “Mixture of True and False” classes into a single “Fake” class, relabeled
“Mostly True” as “Not Fake,” and excluded the “No Factual Content” class. The descriptions of
each class are given in Table 4.

Classifier and experts We used a support vector machine as our classifier, trained on TF-IDF
features from the document title and body as well as other counts (number of authors, number
of capitalized words, etc.) and the number of Facebook comments, likes, and shares. For this

2 https://github.com/BuzzFeedNews/2016-10-facebook-fact-check
3 We consider this a mostly reliable procedure, though there is obviously some subjectivity in determing between

“Mostly True” and “Mixture of True and False” as well as “Mixture of True and False” and “Mostly False.”

TABLE 4

Description of the classes in the original Buzzfeed dataset and which classes we used
in our “Fake” and “Not Fake” classes.

Our Class Buzzfeed Class Description

Fake Mostly False
“Most or all of the information in the post or in the link being
shared is inaccurate. This should also be used when the central
claim being made is false.”

Fake Mixture of True and False

“Some elements of the information are factually accurate, but
some elements or claims are not. This rating should be used when
speculation or unfounded claims are mixed with real events, num-
bers, quotes, etc., or when the headline of the link being shared
makes a false claim but the text of the story is largely accurate.
It should also only be used when the unsupported or false infor-
mation is roughly equal to the accurate information in the post or
link. Finally, use this rating for news articles that are based on
unconfirmed information.”

Not Fake Mostly True

“The post and any related link or image are based on factual
information and portray it accurately. This lets them interpret the
event/info in their own way, so long as they do not misrepresent
events, numbers, quotes, reactions, etc., or make information up.
This rating does not allow for unsupported speculation or claims.”

N/A No Factual Content

“This rating is used for posts that are pure opinion, comics, satire,
or any other posts that do not make a factual claim. This is also
the category to use for posts that are of the Like this if you think...
variety.”
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Figure 18. Left: Accuracy of the classifier on the entire test dataset and accuracies of each expert on the
sample from the test dataset. Right: A class-averaged version of Yule’s Q statistic between all pairs of
classifier/experts.

experiment, we collected 200 labels from eight experts. As before, experts were given the raw text,
rather than the features described above. We also provided the experts with the BuzzFeed class
descriptions, to prevent experts from developing differing interpretations of what “Fake News” is.
On the left of Figure 18 we show the accuracy of the classifier and each expert. The classifier is
about 75% accurate while the experts are from 67–86% accurate. Unlike our other experiments,
the classifier does not outperform the experts. On the right, we show the degree of conditional
dependence between classifier/experts. Again, we observe strong positive dependence between
classifier/experts. Like the two social media experiments, there does not seem to be any structure.

Estimator errors We show the performance of the estimators on 10,000 sets of resamples (of
size 200) from the dataset in Figure 19. We quickly notice that each estimator consistently over-
estimates the true value, unlike in the other experiments, where we mostly underestimated the true
value. This is perhaps explained by the classifier not out-performing the experts. The positive bias
may also be partly explained by the sample, as EMP is positively biased. The estimators all have
median errors of less than 0.10 and never make an error larger than 0.20.

We show the mean absolute error of each estimator in Table 5. MLE and MV perform best
on this dataset, with mean absolute errors of 0.046. COV is the worst, with mean absolute error of
0.093.

Increasing the number of experts We apply each estimator to every possible subset of experts
of size 2, 3, . . . , E − 2. In Figure 20, we show boxplots of the results for MLE and AGR. For MLE,
the median error remains approximately constant as the number of experts increases, while the
variance declines. For AGR, we also see roughly constant median error. The variance appears
larger for even numbers of experts than for odd numbers of experts.
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Figure 19. Signed errors for 10,000 resamples of the Fake News dataset, for each estimator.

TABLE 5

Mean absolute errors of the estimators across 10,000 resamples of the Fake News
dataset.

Estimator Mean Absolute Error
COV 0.093

MLE 0.046

AGR 0.050

MV 0.046
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Figure 20. Absolute errors of MLE (left) and AGR (right) for all possible subsets of between two and six
experts, on the Fake News dataset.
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5.5 SUMMARY

The simplest possible analysis of these estimators on our datasets is to compute the error
for each estimator using all samples. We show this in Table 6. We include AGR-OPT and BEE on
Fake News, since it is a binary problem. To summarize, MLE performs best on three of the four
datasets and COV is best on the other. MLE is always better than MV, while COV and AGR are
better except on Fake News. Because of the small sample size, we should not read too much into
the performance of the estimators based on these results. It is clear from the resampling approach
taken in the preceding sections that each estimator has significant variability. Nevertheless, we
present the results for completeness.

We end our experimental section by drawing the following broad conclusions about the esti-
mators and experts:

1. The estimators are not a replacement for ground truth. Except for Social Media I, the
estimators have noticeably larger errors than EMP.

2. The median performance of MLE is often one of the best, but it tends to have a larger variance.
In our final comparison, MLE has the smallest error in three of the four experiments.

3. The mean absolute error over resamples of the datasets for COV, MLE, and AGR is sometimes,
but not always, better than MV. MLE is better on three of the four datasets (and essentially
ties on the other) while AGR and COV are better on two of the four. We argue that the fact
that these estimators do not always outperform MV is not surprising. It is well known in the
ensemble classifier literature that MV often performs very well at inferring the true label. In
addition, we saw in our simulations that the biggest difference between MV and the other
estimators occurs when experts have low accuracy and the classifier has high accuracy. Since
the experts and classifier usually had reasonably similar performance, we are not surprised
that MV performs about as well as the other estimators.

4. Human experts almost always exhibit strongly positive conditional dependence. Thus, it
seems clear that assuming experts are conditionally independent is not a valid assumption.

5. AGR-OPT and BEE have performance similar to the other estimators on Fake News (for the
simple comparison in Table 6, but since they only apply to binary problems, they are of
limited interest to us.

6. Increasing the number of experts does not have as clear of an effect as we would have antici-
pated. It sometimes helps, but also sometimes appears to make little practical difference.
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TABLE 6

Errors for estimating the accuracy of the classifier, using all samples. The smallest
error for each experiment is in bold.

COV MLE MV AGR AGR-OPT BEE

Job Category −0.077 −0.055 −0.112 −0.089 - -

Social Media I 0.027 0.016 −0.044 −0.033 - -

Social Media II −0.062 −0.088 −0.108 −0.083 - -

Fake News 0.093 0.042 0.047 0.049 0.098 0.050

36



6. DIAGNOSTIC TESTS

In this section, we discuss whether certain diagnostics (inter-rater reliability and an algorithm
to detect dependent groups of experts) can help calibrate a practitioner’s expectations about how
well the estimators will perform.

6.1 INTER-RATER RELIABILITY

We briefly describe the usefulness (or lack thereof) of inter-rater reliability statistics in the
context of the estimators considered in this paper. Traditionally, a study involving expert judgment
may not be considered trustworthy if experts do not attain a high inter-rater reliability score. In
Table 7, we compute Fleiss’ κ for the experts in our four experiments. We also show the results for
data simulated from the copy model and the group model, for increasing amounts of dependence
(increasing the correlation parameter ρ in the copy model and decreasing the number of groups in
the groups of experts model).

In the experiments, the experts have moderate inter-rater agreement. However, we strongly
caution making any interpretation of these numbers. To explain why, observe that in the simulated
data, as we increase the parameter that controls the amount of dependence in the simulation,
while holding accuracy constant, inter-rater reliability also increases. We argue that this is not
surprising. By applying one of these estimators, one is assuming that experts are not particularly
accurate (if experts are very accurate, then good estimation of accuracy can be obtained simply
by comparing the classifier labels to one set of expert labels). As a result, we expect disagreement
between experts and correspondingly low values of inter-rater reliability. In fact, if experts are both
inaccurate and exhibit high inter-rater reliability, they are likely making similar mistakes, meaning
that they are not conditionally independent of one another, which we have observed has a negative
impact on the effectiveness of the estimators. Thus, if one observes high inter-rater reliability, this
can in fact indicate that the experts are both inaccurate and dependent.

6.2 DETECTING DEPENDENCE BETWEEN EXPERTS

Recall that in Section 4, we saw that in a variety of simulation models, conditional dependence
between experts increases error. In the experiments contained in Section 5, we saw that actual
human experts do not satisfy the conditional independence assumption inherent in most of the
estimators. It is of interest then, to consider whether it is possible to detect conditional dependence
between experts (without using the true labels). In what follows, we discuss an unsupervised
algorithm to detect groups of dependent experts and whether the presence of groups of dependent
experts is helpful to the estimators.

6.2.1 Detecting groups of experts

The only direct attempt to detect a dependence model of which we are aware is an algorithm
by Jaffe et al. [18]. The authors postulate that a collection of classifiers may naturally consist of
several distinct “groups” (we can think of this as experts that primarily use a similar group of
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features in their decision making). Their algorithm for detecting groups of experts is highly related
to the COV estimator.

Method First, recall the matrix S defined in Section 3.4 that has off-diagonal entries equal to
those of the classifier/expert covariance matrix. Jaffe et al. [18] show the rather technical result

det

([
Sij Sil
Skj Skl

])
= SijSkl − SkjSil

is zero if and only if

• at least three of the classifiers belong to the same group,

• or if g(i) 6= g(j), g(j) 6= g(k), g(k) 6= g(l), and g(l) 6= g(i).4

With this relationship in mind, if we consider

Dij =
∑
k,l

|SijSkl − SkjSil|,

we can see that when g(i) = g(j), then SijSkl−SkjSil can be zero only when three of the classifiers
are in the same group. On the other hand, when g(i) 6= g(j), then SijSkl−SkjSil can be zero when
either of the two above conditions hold. Thus, we expect dij to be large when g(i) = g(j) and small
if g(i) 6= g(j). Jaffe et al. [18] bound the size of dij below when g(i) = g(j) and from above when
g(i) 6= g(j), for a specific group structure. Once the matrix D is computed, the authors apply a
clustering algorithm to infer the group structure.

4 We use g(i) to denote the group that classifier/expert i belongs to.

TABLE 7

Fleiss’ κ for experts from the experiments, as well as simulated experts from the
Copy and Group models.

Experiment Fleiss’ κ

Job Category 0.34

Soc. Media I 0.61

Soc. Media II 0.62

Fake News 0.47

Simulation Fleiss’ κ

Copy (ρ = 0.0) 0.38

Copy (ρ = 0.25) 0.49

Copy (ρ = 0.50) 0.54

Copy (ρ = 0.75) 0.73

Simulation Fleiss’ κ

Group (4 groups) 0.27

Group (3 groups) 0.30

Group (2 groups) 0.35

Group (1 group) 0.49
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TABLE 8

Proportion of times that spectral clustering returns the correct group structure for
increasing numbers (k) of groups.

k 2 3 4 5 6 7 8 9

Proportion correct 0.999 0.992 0.973 0.975 0.791 0.687 0.573 0.647

Simulations To see whether this idea works in practice, we consider the following simple simula-
tion. Consider a problem with 10 experts that each label 200 data points. The experts are evenly
distributed amongst k groups. (So when k = 4, there are two groups of three and two groups of
two.)

For each k = 2, . . . , 9, we drew 1000 sets of 200 samples. For each set, we compute the
matrix D and apply spectral clustering (using the correct number of clusters) to determine groups.
Table 8 shows the percent correct for k = 2, . . . , 9. It appears that, despite the small sample size,
the algorithm recovers the exact group assignment with high probability up until k = 6. This is
encouraging, as it implies that with a human-in-the-loop to examine the output of the clustering,
it may be possible to recover the assignment function even if the true number of clusters is not
known. In practice however, making this choice may be difficult, especially when there are only a
small number of samples. In Figure 21, we show the groups returned with spectral clustering when
k = 2 and the number of groups requested is 2 and 4 with either 10000 or 200 samples. It is visually
evident (for 10000 samples) that the first clustering is superior to the second, but somewhat less
clear when the number of samples is 200.

Job category experiment In Figure 22, we show the clustering results on the matrix D for
the job category experiment for two, three, and four groups. It was for this experiment that we
previously noted a pattern in the dependency structure. Visually, four groups clearly seems to be
a poor fit, and it appears that two groups is a somewhat better fit than three groups. We consider
the “right” answer to be two groups. To see why, consider Figure 23, which shows the results
of clustering on the matrix of pairwise Yule’s Q statistic with two, three, and four groups. It is
abundantly clear that two is the best fit.

Assuming we can identify the presence of groups, the natural question is, does having multiple
groups of experts help or hurt our estimate? To answer the question, we compare three scenarios
using 100 resamples of the Job Category data. First, estimate classifier accuracy using the classifier
and three experts from the classifier’s group. Second, estimate classifier accuracy using the classifier
and all three experts from the other group. Third, estimate classifier accuracy using the classifier,
one expert from the classifier group and two experts from the other group. The results for MLE and
AGR are shown in Figure 24. It is encouraging to see that for both estimators, and in particular
AGR, the performance is much better when experts come from separate groups, rather than one or
the other. The result is intuitive, as the experts in one group are conditionally independent given
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(a) 10,000 samples, two clusters returned.
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(b) 10,000 samples, four clusters returned.
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(c) 200 samples, two clusters returned.
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(d) 200 samples, four clusters returned.

Figure 21. Clusters returned by spectral clustering (highlighted in red for clarity in the bottom right) for
10,000 and 200 samples, when two and four clusters are requested. The correct number of clusters is two.
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Figure 22. Clusters returned by spectral clustering (highlighted in red for clarity), when two, three, and four
clusters are requested, using the matrix D for the job category experiment.
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Figure 23. Clusters returned by spectral clustering, when two, three, and four clusters are requested, using
the matrix of pairwise Yule’s Q statistic for the job category experiment.
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Figure 24. Left: Error of MLE when applied to experts that come from only the classifier group, only the
other group, or to experts from both groups. Right: Error of AGR for the same experiment.

the true label from the experts in the other group, which is a desirable property for all estimators.
Results for the other estimators are similar to those described here.

Unfortunately, for our other datasets, it does not appear that such a group structure exists.
As a result, our investigation into this phenomena on real data is limited to this one example.

6.2.2 Feature partitioning to induce conditional independence

Given the observation from the previous section that experts coming from different groups is
helpful to the estimators, we consider whether it is possible to structure an experiment with human
experts to encourage the formation of multiple groups. In related work, authors have suggested
attempting to induce conditional independence between automated classifiers by training them on
different feature sets. For instance, in [21], the authors train separate classifiers on the title and body
of text documents. In [22], the author introduces a greedy algorithm to identify subsets of features
such that each subset shares information with the true label, but shares as little information as
possible with the other feature subsets. For the estimators described in Section 3, we are interested
in the case where human experts provide labels. In the machine learning literature at least, it
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appears that most tasks given to experts (or crowd workers) come from the image or text domain;
see for example [9,19,23,24].5 While automated machine learning algorithms may use a variety of
types of features to solve these problems, it is difficult to imagine providing humans with anything
other than the raw image or text. Thus, it does not seem that dividing features into groups is an
extensible approach for most classification problems involving human experts.

5 There are certainly exceptions to this, for example the Job Category classifier we used in Section 5.
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7. CONCLUSION AND FUTURE WORK

Based on the simulations and experiment performed in this paper, we draw the following
broad conclusions. For clarity, we organize these into three areas:

Conditional dependence

1. Conditional dependence between experts clearly impacts the estimators. In each of our three
simulations, we saw larger errors as experts became more dependent.

2. In our experiments, we almost always saw strong conditional dependence between experts,
indicating that real human experts cannot be assumed to be conditionally independent.

3. Ideally, we would want to control this dependence in the design of experiments. The only
work of which we are aware that attempts to address this issue suggests trying to encourage
independence by providing different experts with different features. We do not believe this is
a reasonable approach as most problem for which humans can easily provide labels involve
either text or images, which are not amenable to feature partitioning.

4. Inter-rater reliability should not be used to calibrate expectations about the effectiveness of
the estimators, because it increases as experts become more dependent.

5. If expert dependence is according to the groups of experts model, it appears that this can
be detected in some cases by the approach described in Section 6. We observed experts that
appeared to correspond to this model in the job category experiment, but not in any of the
others.

Expert and classifier performance

1. All estimators have larger errors when the experts have low accuracy. However, there is not
a consistent pattern in terms of whether this manifests as overestimates or underestimates of
accuracy. We observed both in the simulations.

2. The above observation is somewhat disappointing, if not surprising, as it implies that it is
not possible, in general, to achieve a small error if the classifier is significantly more accurate
than the experts.

Estimators

1. In our simulations, the remaining estimators, including MV, perform reasonably well, par-
ticularly for the groups of experts model and the difficulty model, as long as experts are at
least close to the accuracy of the classifier. COV, MLE, and AGR usually outperform MV. The
difference is greater when experts are less accurate than the classifier.
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2. In our experiments, the estimators all perform perhaps surprisingly well. In particular, errors
(on the full dataset) for MLE, COV, and AGR are always less than 0.10 and often less than
0.05.

3. The experiments also support the use of COV, MLE, or AGR over MV, as they outperformed, in
terms of mean absolute error, MV on two (COV and AGR) or three (MLE) of our experiments.

4. There does not seem to be strong experimental evidence to support using one of COV, MLE, or
AGR over the others. We note that MLE tends to have the best mean and median performance
but in some cases has a large variance.

7.1 FUTURE WORK

There are many opportunities for future work in this area. One obvious extension is to
consider estimating class-conditional accuracy. Several of the estimators, COV, MLE, and BEE, can
easily be extended to do this. We speculate that considerably more samples would be required to
reliably estimate each of the class-conditional accuracies. Another interesting question is whether
a clear relationship between the bias of the estimators and the difference in accuracy between the
classifier and experts exists. Finally, given that we can in some cases detect groups of experts in
an unsupervised manner, it would be interesting to explore whether the method for doing so can
be extended or has relevance to other models of dependence.
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[14] P.G. Moreno, A. Artés-Rodŕıguez, Y.W. Teh, and F. Perez-Cruz, “Bayesian nonparametric
crowdsourcing,” J. Mach. Learn. Res. 16(1), 1607–1627 (2015).

[15] M. Venanzi, J. Guiver, P. Kohli, and N.R. Jennings, “Time sensitive-bayesian information
aggregation for crowdsourcing systems.” Journal of Artificial Intelligence Research 56, 517–
545 (2016).

[16] U. Shaham, X. Cheng, O. Dror, A. Jaffe, B. Nadler, J. Chang, and Y. Kluger, “A deep
learning approach to unsupervised ensemble learning.” in Proceedings of the 33rd International
Conference on Machine Learning (2016).

[17] F. Parisi, F. Strino, B. Nadler, and Y. Kluger, “Ranking and combining multiple predictors
without labeled data,” Proceedings of the National Academy of Sciences 111(4), 1253–1258
(2014).

[18] A. Jaffe, E. Fetaya, B. Nadler, T. Jiang, and Y. Kluger, “Unsupervised ensemble learning
with dependent classifiers,” in Proceedings of the 19th International Confernce on Artificial
Intelligence and Statistics (2016).

[19] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movellan, “Whose vote should count more:
Optimal integration of labels from labelers of unknown expertise,” in Proceedings of the 22nd
International Conference on Neural Information Processing Systems (2009), pp. 2035–2043.

[20] D. Aldous, “Exchangeability and related topics.” in Ecole d’Ete St Flour, Springer (1985).

[21] P. Bommannavar, A. Kolcz, and A. Rajaraman, “Recall estimation for rare topic retrieval
from large corpuses,” in 2014 IEEE International Conference on Big Data (2014).

[22] S.V. Mane, False negative estimation: theory, techniques and applications, Ph.D. thesis, UMN
(2008).

[23] P. Welinder, S. Branson, S. Belongie, and P. Perona, “The multidimensional wisdom of
crowds,” in Proceedings of the 23rd International Conference on Neural Information Processing
Systems (2010), pp. 2424–2432.

[24] R. Snow, B. O’Connor, D. Jurafsky, and A.Y. Ng, “Cheap and fast—but is it good?: Evalu-
ating non-expert annotations for natural language tasks,” in Proceedings of the Conference on
Empirical Methods in Natural Language Processing (2008), pp. 254–263.

46



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY)

31-01-2018
2. REPORT TYPE

Technical Report 
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

 

5a. CONTRACT NUMBER 
FA8721-05-C-0002 and/or FA8702-15-D-0001 

Estimating Classifier Accuracy Using Noisy Expert Labels 5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 
2716 

J.T. Holodnak  
J.T. Matterer  
W.W. Streilein 

5e. TASK NUMBER 
272 

5f. WORK UNIT NUMBER 

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AND ADDRESS(ES) 

8. PERFORMING ORGANIZATION REPORT
NUMBER

MIT Lincoln Laboratory 
244 Wood Street 
Lexington, MA 02421-6426 

 

TR-1225 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Intelligence Advanced Research Projects Activity
Office of the Director of National Intelligence
Washington DC 20511.

IARPA 

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

13. SUPPLEMENTARY NOTES

13. ABSTRACT
In this work, we present an empirical comparison of statistical methods that estimate the accuracy of a classifier using noisy 
expert labels. We are motivated by the application of machine learning to difficult problems for which even experts may be 
unable to provide an authoritative label for every data instance. Several estimators have been recently proposed in the 
literature, but prior empirical work to evaluate the applicability of these estimators to real-world problems is limited. We apply 
the estimators to labels simulated from three models of the expert labeling process and also four real datasets labeled by human 
experts. Our simulations reveal the importance of the accuracy of the classifier relative to the experts and confirm that 
conditional dependence between experts negatively impacts estimator performance. On two of the real datasets, the estimators 
clearly outperformed the baseline majority vote estimator, supporting their use in applications. We also briefly examine the 
utility, in terms of increasing or decreasing confidence in an estimator’s output, of a few diagnostics that can be applied to the 
expert labels.  

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON 

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

Unclassified 64 19b. TELEPHONE NUMBER (include area 
code)

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18



This page intentionally left blank.


	Title
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Prior empirical work
	Our focus areas
	Organization

	Notation and Problem Setting
	Accuracy Estimators
	Baselines
	Agreement-based estimators
	Graphical Models (MLE and BEE)
	Covariance-based Estimator (COV)

	Simulations
	Models considered
	Model parameterization
	Results
	Summary

	Experiments
	Job Category
	Cyber Social Media Conversations I
	Cyber Social Media Conversations II
	Fake News
	Summary

	Diagnostic Tests
	Inter-rater reliability
	Detecting dependence between experts

	Conclusion and Future Work
	Future Work

	References



